Molecular dynamic simulation of binary ZrxCu100-x metallic glass thin film growth
نویسندگان
چکیده
In this work, we employed classical molecular dynamics simulations model to study ZrxCu100-x (3 ≤ x ≤ 95) metallic glass films deposited on a silicon (100) substrate. Input data were chosen to fit with the experimental operating conditions of a magnetron sputtering deposition system. The growth evolution is monitored with variable compositions of the incoming atom vapor. The Zr-Zr, Cu-Cu and Zr-Cu interactions are modeled with the Embedded Atom Method (EAM), the Si-Si interaction with Tersoff potential, the Zr-Si and Cu-Si interactions with Lennard-Jones (12-6) potential. Different film morphology and structure were detected and analyzed when the Zr to Cu ratio is varied. The results are compared with X-ray diffraction and Scanning Electron Microscopy analyses of experimentally deposited thin films by magnetron sputter deposition process. Both simulation and experiment results show that the structure of the ZrxCu100-x film varies from crystalline to amorphous depending on the elemental composition. (*) Corresponding author: [email protected]
منابع مشابه
Growth, Characterization of Cu Nanoparticles Thin Film by Nd: YAG Laser Pulses Deposition
We report the growth and characterization of Cu nanoparticles thin film of on glass substrate by pulse laser deposition method. The Cu thin film prepared with different energy 50, 60, 70, and 80 mJ. The energy effect on the morphological, structural and optical properties were studied by AFM, XRD and UV-Visible spectrophotometer. Surface topography studied by atomic force microscopy revealed na...
متن کاملAtomic Simulation of Temperature Effect on the Mechanical Properties of Thin Films
The molecular dynamic technique was used to simulate the nano-indentation test on the thin films of silver, titanium, aluminum and copper which were coated on the silicone substrate. The mechanical properties of the selected thin films were studied in terms of the temperature. The temperature was changed from 193 K to 793 K with an increment of 100 K. To investigate the effect of temperature on...
متن کاملEffect of Thickness on Properties of Copper Thin Films Growth on Glass by DC Planar Magnetron Sputtering
Copper thin films with nano-scale structure have numerous applications in modern technology. In this work, Cu thin films with different thicknesses from 50–220 nm have been deposited on glass substrate by DC magnetron sputtering technique at room temperature in pure Ar gas. The sputtering time was considered in 4, 8, 12 and 16 min, respectively. The thickness effect on the structural, mo...
متن کاملSimulation of Fabrication toward High Quality Thin Films for Robotic Applications by Ionized Cluster Beam Deposition
The most commonly used method for the production of thin films is based on deposition of atoms or molecules onto a solid surface. One of the suitable method is to produce high quality metallic, semiconductor and organic thin film is Ionized cluster beam deposition (ICBD), which are used in electronic, robotic, optical, optoelectronic devices. Many important factors such as cluster size, cluster...
متن کاملPreparation and proposed mechanism of ZnO Nanostructure Thin Film on Glass with Highest c-axis Orientation
In this paper, ZnO thin film is deposited on slide glass substrate using the sol-gel process. Presenting well-defined orientation of ZnO thin films Nanostructure were obtained by dip coating of zinc acetate dihydrate, monoethanolamine (MEA), de-ionized water and isopropanol alcohol. The annealed ZnO thin films were transparent ca 85-90% in visible range with an absorption edges at about 375 nm....
متن کامل